Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.315
Filtrar
1.
J Neuroinflammation ; 21(1): 88, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600569

RESUMO

BACKGROUND: Mechanical softening of the glial scar region regulates axonal regeneration to impede neurological recovery in central nervous system (CNS) injury. Microglia, a crucial cellular component of the glial scar, facilitate neuronal survival and neurological recovery after spinal cord injury (SCI). However, the critical mechanical characterization of injured spinal cord that harmonizes neuroprotective function of microglia remains poorly understood. METHODS: Spinal cord tissue stiffness was assessed using atomic force microscopy (AFM) in a mouse model of crush injury. Pharmacological depletion of microglia using PLX5622 was used to explore the effect of microglia on mechanical characterization. Conditional knockout of Fascin-1 in microglia (Fascin-1 CKO) alone or in combination with inhibition of myosin activity was performed to delve into relevant mechanisms of microglia regulating mechanical signal. Immunofluorescence staining was performed to evaluate the related protein levels, inflammatory cells, and neuron survival after SCI. The Basso mouse scale score was calculated to assess functional recovery. RESULTS: Spinal cord tissue significantly softens after SCI. Microglia depletion or Fascin-1 knockout in microglia limits tissue softening and alters mechanical characterization, which leads to increased tissue pathology and impaired functional recovery. Mechanistically, Fascin-1 inhibits myosin activation to promote microglial migration and control mechanical characterization after SCI. CONCLUSIONS: We reveal that Fascin-1 limits myosin activity to regulate mechanical characterization after SCI, and this mechanical signal should be considered in future approaches for the treatment of CNS diseases.


Assuntos
Proteínas dos Microfilamentos , Microglia , Traumatismos da Medula Espinal , Animais , Camundongos , Proteínas de Transporte , Gliose/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microglia/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia
2.
J Spinal Cord Med ; : 1-9, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656250

RESUMO

OBJECTIVE: This study aimed to establish a nomogram-based assessment for predicting the risk of hyponatremia after spinal cord injury (SCI). DESIGN: The study is a retrospective single-center study. PARTICIPANTS: SCI patients hospitalized in the First Affiliated Hospital of Guangxi Medical University. SETTING: The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China. METHODS: We performed a retrospective clinical study to collect SCI patients hospitalized in the First Affiliated Hospital of Guangxi Medical University from 2016 to 2020. Based on their clinical scores, the SCI patients were grouped as either hyponatremic or non-hyponatremic, SCI patients in 2016-2019 were identified as the training set, and patients in 2020 were identified as the test set. A nomogram was generated, the calibration curve, receiver operating characteristic (ROC) curve, and decision curve analysis (DCA) were used to validate the model. RESULTS: A total of 895 SCI patients were retrieved. After excluding patients with incomplete data, 883 patients were finally included in this study and used to construct the nomograms. The indicators used in the nomogram included sex, completeness of SCI, pneumonia, urinary tract infection, fever, constipation, white blood cell (WBC), albumin and serum Ca2+. These indices were determined by the least absolute shrinkage and selection operator (LASSO) regression analysis. The C-index of the model was 0.81, the area under the curve (AUC) of the training set was 0.82(Cl:0.79-0.85), and the validation set was 0.79(Cl:0.73-0.85). CONCLUSIONS: Nomogram has good predictive ability, sex, completeness of SCI, pneumonia, urinary tract infection, fever, constipation, WBC, albumin and serum Ca2+ were predictors of hyponatremia after SCI.

3.
J Neurotrauma ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661533

RESUMO

Spinal cord injury (SCI) negatively impacts individuals' functional independence, motor, and sensory function. Intense walking training has been shown to facilitate recovery for individuals with chronic SCI. Powered robotic exoskeletons provide therapists with a tool that allows them to conduct walking training with less therapist effort as compared to conventional walking training. Exoskeletal-assisted walking (EAW) has been studied in the chronic SCI population with preliminary reports showing benefits in mobility, health, and quality of life outcomes. However, few reports have studied EAW's benefits in the acute (<90 days post) SCI population at a time when neural plasticity is most dynamic and modifiable. The purpose of the study was to conduct a pilot randomized controlled trial to understand the effects of incorporated EAW in acute inpatient rehabilitation (AIR) for individuals with spinal cord injury (SCI) on functional, motor, and sensory recovery. The study outcomes included the Spinal Cord Independence Measure (SCIM) III and International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) motor and sensory scores that were assessed by unblinded assessors. We also recorded EAW session data, including adverse events, walking and up time, step counts, Borg Rating of Perceived Exertion, and compliance with scheduled EAW training. From August 2019 to July 2022, 16 participants completed the AIR with incorporated EAW and 12 completed the standard AIR, all with SCI and preserved leg function within 90 days post-injury. During each session, the AIR with incorporated EAW group averaged 34.3 (±9.4) minutes of up time, 25.4 (±7.7) minutes of walk time, and 536 (±157) steps. Analysis via two-by-two mixed-effects models showed significant increases in the SCIM total score and ISNCSCI total motor and sensory scores over time for the AIR with incorporated EAW group (SCIM total score: F(1, 26)= 5.59, P=0.03; total motor score: F(1, 26)=8.06, P<0.01; total sensory score: F(1, 19.2)=5.08, P=0.04), outperforming the standard AIR group. The AIR with incorporated EAW group showed 13, 14, and 22 points higher changes in the SCIM total score, total motor score, and total sensory score (respectively) by discharge compared with the standard AIR group. Incorporating EAW into AIR may facilitate functional, motor, and sensory recovery for individuals with SCI during AIR better than standard AIR. However, the study had a limited sample size. Further studies are needed to clarify the effects of EAW in AIR.

4.
J Spinal Cord Med ; : 1-10, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661677

RESUMO

BACKGROUND: Chronic pain affects 70% of individuals with spinal cord injury (SCI) and leads to declines in health and quality of life. Neuropathic and nociceptive pain are phenotypes derived from different mechanisms that contribute to pain perception. The objective of this research was to investigate differential pain responses to moderate-to-vigorous physical activity (MVPA) in two chronic pain phenotypes: neuropathic and nociceptive pain. METHODS: Community-based physical activity levels were collected for one week in 17 individuals with SCI using a wrist-worn accelerometer, and daily pain ratings were assessed and categorized by phenotype. Physical activity levels were summarized to calculate minutes of MVPA. Correlational analyses were conducted to compare relationships between pain intensity and MVPA across individual participants and between pain phenotype groups. RESULTS: The neuropathic pain group revealed significant negative correlation between MVPA and pain intensity. In the nociceptive pain group, there was no significant correlation between MVPA and pain intensity. Further analysis revealed two subgroups of positive (N = 4) and negative (N = 3) correlations between MVPA and pain intensity. Pain location differed between the subgroups of nociceptive pain. Individuals with negative correlation experienced neck and upper back pain, whereas individuals with positive correlation experienced unilateral upper extremity pain. CONCLUSION: Differential relationships exist between pain phenotypes and MVPA in individuals with SCI. Pain location differed between the subgroups of nociceptive pain, which we presume may indicate the presence of nociplastic pain in some individuals. These results may contribute to the advancement of personalized pain management by targeting non-pharmacological interventions for specific pain phenotypes.Trial registration: ClinicalTrials.gov identifier: NCT05236933..

5.
Tissue Cell ; 88: 102378, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38663114

RESUMO

Traumatic spinal cord injury (TSCI) is one of the catastrophic events in the nervous system that leads to the loss of sensory and motor function of the spinal cord at the site of injury. Considering that several factors such as apoptosis, inflammation, and oxidative stress play a role in the spread of damage caused by trauma, therefore, the treatment should also be based on multifactorial approaches. Currently, we investigated the effects of human menstrual blood stem cells (MenSCs)-derived exosomes in combination with hyperbaric oxygen therapy (HBOT) in the recovery of TSCI in rats. Ninety male mature Sprague-Dawley (SD) rats were planned into five equal groups, including; control group, TSCI group, Exo group (underwent TSCI and received MenSCs -derived exosomes), HBOT group (underwent TSCI and received HBOT), and Exo+HBOT group (underwent TSCI and received MenSCs -derived exosomes plus HBOT). After the behavioral evaluation, tissue samples were obtained for stereological, immunohistochemical, biochemical, and molecular assessments. Our results showed that the numerical density of neurons, the concentrations of antioxidative biomarkers (CAT, GSH, and SOD), and neurological function scores were significantly greater in the treatments group than in the TSCI group, and these changes were more obvious in the Exo+HBOT ones (P<0.05). This is while the numerical densities of apoptotic cells and glial cells, the levels of an oxidative factor (MDA) and proinflammatory cytokines (IL-1ß and TNF-α) were considerably decreased in the treatment groups, specially the Exo+HBOT group, compared to the TSCI group (P<0.05). We conclude that the co-administration of exosomes derived from MenSCs and HBOT has more neuroprotective effects in animals with TSCI.

6.
Cell Rep Med ; : 101525, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38663398

RESUMO

Spinal cord injury (SCI) increases the risk of cardiometabolic disorders, including hypertension, dyslipidemia, and insulin resistance. Not only does SCI lead to pathological expansion of adipose tissue, but it also leads to ectopic lipid accumulation in organs integral to glucose and insulin metabolism. The pathophysiological changes that underlie adipose tissue dysfunction after SCI are unknown. Here, we find that SCI exacerbates lipolysis in epididymal white adipose tissue (eWAT). Whereas expression of the α2δ1 subunit of voltage-gated calcium channels increases in calcitonin gene-related peptide-positive dorsal root ganglia neurons that project to eWAT, conditional deletion of the gene encoding α2δ1 in these neurons normalizes eWAT lipolysis after SCI. Furthermore, α2δ1 pharmacological blockade through systemic administration of gabapentin also normalizes eWAT lipolysis after SCI, preventing ectopic lipid accumulation in the liver. Thus, our study provides insight into molecular causes of maladaptive sensory processing in eWAT, facilitating the development of strategies to reduce metabolic and cardiovascular complications after SCI.

7.
Neurotherapeutics ; : e00362, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38664194

RESUMO

Genomic screened homeobox 1 (Gsx1 or Gsh1) is a neurogenic transcription factor required for the generation of excitatory and inhibitory interneurons during spinal cord development. In the adult, lentivirus (LV) mediated Gsx1 expression promotes neural regeneration and functional locomotor recovery in a mouse model of lateral hemisection spinal cord injury (SCI). The LV delivery method is clinically unsafe due to insertional mutations to the host DNA. In addition, the most common clinical case of SCI is contusion/compression. In this study, we identify that adeno-associated virus serotype 6 (AAV6) preferentially infects neural stem/progenitor cells (NSPCs) in the injured spinal cord. Using a rat model of contusion SCI, we demonstrate that AAV6 mediated Gsx1 expression promotes neurogenesis, increases the number of neuroblasts/immature neurons, restores excitatory/inhibitory neuron balance and serotonergic neuronal activity through the lesion core, and promotes locomotor functional recovery. Our findings support that AAV6 preferentially targets NSPCs for gene delivery and confirmed Gsx1 efficacy in clinically relevant rat model of contusion SCI.

8.
Discov Med ; 36(183): 714-720, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665020

RESUMO

BACKGROUND: Spinal cord injury (SCI) is usually caused by external direct or indirect factors, and with a high morbidity and mortality rate. The aim of this study was to observe the effects of Dexmedetomidine (DEX) combined with Esketamine (ESK) on pain behavior and potential analgesic mechanisms in rats with SCI. The goal was to provide a reliable multimodal analgesic medication regimen for SCI. METHODS: Thirty rats were divided into five groups with six rats in each group: Sham group, SCI group, DEX group, ESK group, and DEX+ESK group. The SCI model in rats was constructed, and the motor function of hind limbs of rats was measured using Basso Beattie Bresnahan (BBB) locomotor rating scale and inclined plate test. The levels of interleukin 18 (IL-18), interleukin 1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) in the spinal cord were determined by enzyme-linked immunosorbent assay (ELISA). The expressions of substance P (SP), neurokinin-1 receptor (NK-1R), B cell lymphoma-2 (Bcl-2), and Bcl2-associated X protein (Bax) in the rats' spinal cord were measured by Western blot assay. The viability of spinal astrocytes was evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS: After 7 days, the BBB scores were significantly higher in the DEX, ESK, and DEX+ESK groups compared to the SCI group (p < 0.01). Additionally, the DEX+ESK group had significantly higher scores than both the DEX and ESK groups (p < 0.01). The maximum angle of the DEX (p < 0.05), ESK (p < 0.05), and DEX+ESK groups (p < 0.01) were higher than the SCI group, and the maximum angle of DEX+ESK group was higher than DEX and ESK groups (p < 0.05). The levels of IL-18, IL-1ß, and TNF-α in the DEX, ESK, and DEX+ESK groups were lower than the SCI group (p < 0.01), while the DEX+ESK group had significantly lower IL-18, IL-1ß, and TNF-α levels than the DEX and ESK groups (p < 0.01). The levels of SP (p < 0.01) and NK-1R (p < 0.05) were lower in the DEX, ESK, and DEX+ESK groups compared to the SCI group, and the levels of SP and NK-1R were lower in the DEX+ESK group compared to the DEX and ESK groups (p < 0.01). The DEX and ESK groups suppressed the activity of spinal astrocytes (p < 0.01), however, the DEX+ESK group had larger effects on spinal astrocytes than the ESK group (p < 0.05). CONCLUSIONS: Treatment using DEX combined with ESK improves the motor function, inhibits inflammation and astrocyte activity, and exerts analgesic effects on rats with SCI. These findings can serve as a reference for the selection of multi-modal analgesics.


Assuntos
Dexmedetomidina , Ketamina , Ratos Sprague-Dawley , Traumatismos da Medula Espinal , Animais , Dexmedetomidina/farmacologia , Dexmedetomidina/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/metabolismo , Ratos , Ketamina/farmacologia , Ketamina/uso terapêutico , Masculino , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Medula Espinal/metabolismo , Substância P/metabolismo , Modelos Animais de Doenças , Fator de Necrose Tumoral alfa/metabolismo , Receptores da Neurocinina-1/metabolismo , Interleucina-1beta/metabolismo
9.
Trauma Case Rep ; 51: 101014, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38623090

RESUMO

Child abuse is a matter of serious concern that can often result in devastating injuries. Incidence of spinal injuries from child abuse has been reported in <1-3 % of spinal injury cases. In the present study, a case of thoracolumbar translational injury (AO type C) is presented following an incidence of child abuse in a 2-year-old female. After successful management with operative fixation, the child showed a remarkable recovery in her neurological function with ambulatory power.

10.
Comput Struct Biotechnol J ; 24: 258-263, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38623183

RESUMO

Spinal Cord Independence Measure (SCIM) was an important functional outcome measure specifically designed for spinal cord injury (SCI) patients, with the self-reported version of SCIM (SCIM-SR) published in 2013. This study aims to translate the SCIM-SR into Chinese, and to investigate the validity of Chinese SCIM-SR among SCI patients. This Chinese version of SCIM-SR was translated into Chinese in a standardized approach, and then filled out by a sample of patients with SCI (n = 205) within 3 days after admission. Validity of Chinese SCIM-SR was then analyzed using Rasch analysis and principal component analysis. The subscale Selfcare and subscale Mobility showed good fit to the Rasch model, with no significance found in Chi-square test results for item-trait interaction, using Bonferroni adjustment for the significant level (χ2 =18.125, P = 0.111; χ2 =33.629, P = 0.006). Mean fit residual for items and persons of each subscale were within ± 2.5. The model fit of the subscale of Respiration and Sphincter Management was not satisfactory even after deleting one item and merging two items with local dependence. However, Kaiser-Meyer-Olkin test was > 0.50 in total score and all the subscales of Chinese SCIM-SR, and P < 0.05 in the Bartlett's test. There was no differential item functioning for gender, time post injury, age, and etiology in any of the three subscales. An online version of Chinese SCIM-SR was also developed. It is concluded that the SCIM-SR in Chinese is valid for application in individuals with SCI. SCIM-SR is considered as an important tool for self-reporting functional status from SCI individuals' perspective.

11.
Zebrafish ; 21(2): 214-222, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621204

RESUMO

The zebrafish is a powerful model organism for studying development and regeneration. However, there is a lack of a standardized reference diet for developmental and regeneration experiments. Most studies evaluate the rate of growth, survival, and fecundity. In this study, we compare three diets and their effects on growth and regeneration after a spinal cord injury (SCI). Fish were fed daily for 1 week with daily measurements of overall length and width of spinal injury. Fish fed a live rotifer diet grew 32%, whereas a commercially available diet only led to a 4% increase in body length. Similarly, differences in rate of regeneration were observed with over 80% of rotifer-fed larvae forming a glial bridge after injury compared to <10% of zebrafish fed with the commercial diet. Our data highlight the need for establishing a standardized diet for regeneration studies to improve research reproducibility.


Assuntos
Rotíferos , Regeneração da Medula Espinal , Animais , Peixe-Zebra , Larva , Reprodutibilidade dos Testes , Dieta/veterinária
12.
Sci Rep ; 14(1): 9120, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643334

RESUMO

Improvements in care and rehabilitation have resulted in a higher proportion of people living with spinal cord injury (SCI), which calls for an increased focus on participation and autonomy. This observational cross-sectional study investigated the impact of SCI on autonomy and how it correlates to activity performance and upper extremity functioning. A total of 25 adults (mean age 58 years) with chronic cervical or thoracic SCI were included. Self-perceived autonomy was measured with Impact on Participation and Autonomy questionnaire, independence in activities of daily living (ADL) with Spinal Cord Independence Measure, upper extremity functioning with Action Research Arm Test (ARAT) and kinematic measures of the drinking task. The results showed that most participants perceived injury-related restrictions in outdoor autonomy (80%), family role (76%), and in indoor autonomy (72%). Independence in self-care (r = 0.72), mobility (r = 0.59) and upper extremity kinematics of movement time (r = 0.63) and smoothness (r = 0.49) were correlated to indoors autonomy. Social life autonomy was correlated to self-care (r = 0.50) and ARAT (r = 0.41). In conclusion, autonomy was perceived restricted after SCI in several major life areas and correlated with independence in ADL and upper extremity functioning. The aspects of autonomy should be considered more in goal setting and clinical decision-making.


Assuntos
Atividades Cotidianas , Traumatismos da Medula Espinal , Adulto , Humanos , Pessoa de Meia-Idade , Traumatismos da Medula Espinal/reabilitação , Extremidade Superior , Movimento , Autocuidado
13.
Clin Transl Med ; 14(4): e1661, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644791

RESUMO

BACKGROUND: Spinal cord injury (SCI)-induced neuroinflammation and oxidative stress (OS) are crucial events causing neurological dysfunction. Aconitate decarboxylase 1 (ACOD1) and its metabolite itaconate (Ita) inhibit inflammation and OS by promoting alkylation of Keap1 to induce Nrf2 expression; however, it is unclear whether there is another pathway regulating their effects in inflammation-activated microglia after SCI. METHODS: Adult male C57BL/6 ACOD1-/- mice and their wild-type (WT) littermates were subjected to a moderate thoracic spinal cord contusion. The degree of neuroinflammation and OS in the injured spinal cord were assessed using qPCR, western blot, flow cytometry, immunofluorescence, and trans-well assay. We then employed immunoprecipitation-western blot, chromatin immunoprecipitation (ChIP)-PCR, dual-luciferase assay, and immunofluorescence-confocal imaging to examine the molecular mechanisms of ACOD1. Finally, the locomotor function was evaluated with the Basso Mouse Scale and footprint assay. RESULTS: Both in vitro and in vivo, microglia with transcriptional blockage of ACOD1 exhibited more severe levels of neuroinflammation and OS, in which the expression of p62/Keap1/Nrf2 was down-regulated. Furthermore, silencing ACOD1 exacerbated neurological dysfunction in SCI mice. Administration of exogenous Ita or 4-octyl itaconate reduced p62 phosphorylation. Besides, ACOD1 was capable of interacting with phosphorylated p62 to enhance Nrf2 activation, which in turn further promoted transcription of ACOD1. CONCLUSIONS: Here, we identified an unreported ACOD1-p62-Nrf2-ACOD1 feedback loop exerting anti-inflammatory and anti-OS in inflammatory microglia, and demonstrated the neuroprotective role of ACOD1 after SCI, which was different from that of endogenous and exogenous Ita. The present study extends the functions of ACOD1 and uncovers marked property differences between endogenous and exogenous Ita. KEY POINTS: ACOD1 attenuated neuroinflammation and oxidative stress after spinal cord injury. ACOD1, not itaconate, interacted with p-p62 to facilitate Nrf2 expression and nuclear translocation. Nrf2 was capable of promoting ACOD1 transcription in microglia.


Assuntos
Carboxiliases , Hidroliases , Camundongos Endogâmicos C57BL , Microglia , Fator 2 Relacionado a NF-E2 , Traumatismos da Medula Espinal , Succinatos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/complicações , Camundongos , Microglia/metabolismo , Microglia/efeitos dos fármacos , Masculino , Carboxiliases/metabolismo , Carboxiliases/genética , Succinatos/farmacologia , Succinatos/metabolismo , Modelos Animais de Doenças , Proteína Sequestossoma-1/metabolismo
14.
Res Sq ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38645238

RESUMO

Background: Spinal cord injury (SCI) causes long-term sensorimotor deficits and posttraumatic neuropathic pain, with no effective treatment. In part, this reflects an incomplete understanding of the complex secondary pathobiological mechanisms involved. SCI triggers microglial/macrophage activation with distinct pro-inflammatory or inflammation-resolving phenotypes, which potentiate tissue damage or facilitate functional repair, respectively. The major integrin Mac-1 (CD11b/CD18, αMß2 or CR3), a heterodimer consisting of αM (CD11b) and ß2 (CD18) chains, is generally regarded as a pro-inflammatory receptor in neurotrauma. Multiple immune cells of the myeloid lineage express CD11b, including microglia, macrophages, and neutrophils. In the present study, we examined the effects of CD11b gene ablation on posttraumatic neuroinflammation and functional outcomes after SCI. Methods: Young adult age-matched female CD11b knockout (KO) mice and their wildtype (WT) littermates were subjected to moderate thoracic spinal cord contusion. Neuroinflammation in the injured spinal cord was assessed with qPCR, flow cytometry, NanoString, and RNAseq. Neurological function was evaluated with the Basso Mouse Scale (BMS), gait analysis, thermal hyperesthesia, and mechanical allodynia. Lesion volume was evaluated by GFAP-DAB immunohistochemistry, followed by analysis with unbiased stereology. Results: qPCR analysis showed a rapid and persistent upregulation of CD11b mRNA starting from 1d after injury, which persisted up to 28 days. At 1d post-injury, increased expression levels of genes that regulate inflammation-resolving processes were observed in CD11b KO mice. Flow cytometry analysis of CD45intLy6C-CX3CR1+ microglia, CD45hiLy6C+Ly6G- monocytes, and CD45hiLy6C+Ly6G+ neutrophils revealed significantly reduced cell counts as well as reactive oxygen production in CD11b KO mice at d3 post-injury. Further examination of the injured spinal cord with NanoString Mouse Neuroinflammation Panel and RNAseq showed upregulated expression of pro-inflammatory genes, but downregulated expression of the reactive oxygen species pathway. Importantly, CD11b KO mice exhibited significantly improved locomotor function, reduced cutaneous mechanical/thermal hypersensitivity, and limited tissue damage at 8 weeks post-injury. Conclusion: Collectively, our data suggest an important role for CD11b in regulating tissue inflammation and functional outcome following SCI. Thus, the integrin CD11b represents a potential target that may lead to novel therapeutic strategies for SCI.

15.
Bone Rep ; 21: 101761, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38646090

RESUMO

Spinal cord injury (SCI) leads to significant sublesional bone loss and high fracture rates. While loss of mechanical loading plays a significant role in SCI-induced bone loss, animal studies have demonstrated mechanical loading alone does not fully account for loss of bone following SCI. Indeed, we have shown that bone loss occurs below the level of an incomplete moderate contusion SCI, despite the resumption of weight-bearing and stepping. As systemic factors could also impact bone after SCI, bone alterations may also be present in bone sites above the level of injury. To examine this, we assessed bone microarchitecture and bone turnover in the supralesional humerus in male and female rats at two different ages following a moderate contusion injury in both sub-chronic (30 days) and chronic (180 days) time points after injury. At the 30-day timepoint, we found that both young and adult male SCI rats had decrements in trabecular bone volume at the supralesional proximal humerus (PH), while female SCI rats were not different from age-matched shams. At the 180-day timepoint, there were no statistical differences between SCI and sham groups, irrespective of age or sex, at the supralesional proximal humerus. At the 30-day timepoint, all SCI rats had lower BFR and higher osteoclast-covered trabecular surfaces in the proximal humerus compared to age-matched sham groups generally matching the pattern of SCI-induced changes in bone turnover seen in the sublesional proximal tibia. However, at the 180-day timepoint, only male SCI rats had lower BFR at the supralesional proximal humerus while female SCI rats had higher or no different BFR than their age-matched counterparts. Overall, this preclinical study demonstrates that a moderate contusion SCI leads to alterations in bone turnover above the level of injury within 30-days of injury; however male SCI rats maintained lower BFR in the supralesional humerus into long-term recovery. These data further highlight that bone loss after SCI is not driven solely by disuse. Additionally, these data allude to potential systemic factors exerting influence on bone following SCI and highlight the need to consider treatments for SCI-induced bone loss that impact both sublesional and systemic factors.

16.
Cell Mol Neurobiol ; 44(1): 39, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649645

RESUMO

Spinal-cord injury (SCI) is a severe condition that can lead to limb paralysis and motor dysfunction, and its pathogenesis is not fully understood. The objective of this study was to characterize the differential gene expression and molecular mechanisms in the spinal cord of mice three days after spinal cord injury. By analyzing RNA sequencing data, we identified differentially expressed genes and discovered that the immune system and various metabolic processes play crucial roles in SCI. Additionally, we identified UHRF1 as a key gene that plays a significant role in SCI and found that SCI can be improved by suppressing UHRF1. These findings provide important insights into the molecular mechanisms of SCI and identify potential therapeutic targets that could greatly contribute to the development of new treatment strategies for SCI.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Traumatismos da Medula Espinal , Ubiquitina-Proteína Ligases , Animais , Traumatismos da Medula Espinal/fisiopatologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Camundongos , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Atividade Motora/fisiologia , Camundongos Endogâmicos C57BL , Recuperação de Função Fisiológica/fisiologia , Feminino , Medula Espinal/metabolismo , Medula Espinal/patologia , Regulação da Expressão Gênica
17.
Clin Transl Med ; 14(4): e1650, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38649772

RESUMO

BACKGROUND: Although many molecules have been investigated as biomarkers for spinal cord injury (SCI) or ischemic stroke, none of them are specifically induced in central nervous system (CNS) neurons following injuries with low baseline expression. However, neuronal injury constitutes a major pathology associated with SCI or stroke and strongly correlates with neurological outcomes. Biomarkers characterized by low baseline expression and specific induction in neurons post-injury are likely to better correlate with injury severity and recovery, demonstrating higher sensitivity and specificity for CNS injuries compared to non-neuronal markers or pan-neuronal markers with constitutive expressions. METHODS: In animal studies, young adult wildtype and global Atf3 knockout mice underwent unilateral cervical 5 (C5) SCI or permanent distal middle cerebral artery occlusion (pMCAO). Gene expression was assessed using RNA-sequencing and qRT-PCR, while protein expression was detected through immunostaining. Serum ATF3 levels in animal models and clinical human samples were measured using commercially available enzyme-linked immune-sorbent assay (ELISA) kits. RESULTS: Activating transcription factor 3 (ATF3), a molecular marker for injured dorsal root ganglion sensory neurons in the peripheral nervous system, was not expressed in spinal cord or cortex of naïve mice but was induced specifically in neurons of the spinal cord or cortex within 1 day after SCI or ischemic stroke, respectively. Additionally, ATF3 protein levels in mouse blood significantly increased 1 day after SCI or ischemic stroke. Importantly, ATF3 protein levels in human serum were elevated in clinical patients within 24 hours after SCI or ischemic stroke. Moreover, Atf3 knockout mice, compared to the wildtype mice, exhibited worse neurological outcomes and larger damage regions after SCI or ischemic stroke, indicating that ATF3 has a neuroprotective function. CONCLUSIONS: ATF3 is an easily measurable, neuron-specific biomarker for clinical SCI and ischemic stroke, with neuroprotective properties. HIGHLIGHTS: ATF3 was induced specifically in neurons of the spinal cord or cortex within 1 day after SCI or ischemic stroke, respectively. Serum ATF3 protein levels are elevated in clinical patients within 24 hours after SCI or ischemic stroke. ATF3 exhibits neuroprotective properties, as evidenced by the worse neurological outcomes and larger damage regions observed in Atf3 knockout mice compared to wildtype mice following SCI or ischemic stroke.

18.
Stem Cell Res Ther ; 15(1): 114, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38650015

RESUMO

BACKGROUND: Spinal cord injury (SCI) is an intractable neurological disease in which functions cannot be permanently restored due to nerve damage. Stem cell therapy is a promising strategy for neuroregeneration after SCI. However, experimental evidence of its therapeutic effect in SCI is lacking. This study aimed to investigate the efficacy of transplanted cells using stepwise combined cell therapy with human mesenchymal stem cells (hMSC) and induced pluripotent stem cell (iPSC)-derived motor neuron progenitor cells (iMNP) in a rat model of SCI. METHODS: A contusive SCI model was developed in Sprague-Dawley rats using multicenter animal spinal cord injury study (MASCIS) impactor. Three protocols were designed and conducted as follows: (Subtopic 1) chronic SCI + iMNP, (Subtopic 2) acute SCI + multiple hMSC injections, and (Main topic) chronic SCI + stepwise combined cell therapy using multiple preemptive hMSC and iMNP. Neurite outgrowth was induced by coculturing hMSC and iPSC-derived motor neuron (iMN) on both two-dimensional (2D) and three-dimensional (3D) spheroid platforms during mature iMN differentiation in vitro. RESULTS: Stepwise combined cell therapy promoted mature motor neuron differentiation and axonal regeneration at the lesional site. In addition, stepwise combined cell therapy improved behavioral recovery and was more effective than single cell therapy alone. In vitro results showed that hMSC and iMN act synergistically and play a critical role in the induction of neurite outgrowth during iMN differentiation and maturation. CONCLUSIONS: Our findings show that stepwise combined cell therapy can induce alterations in the microenvironment for effective cell therapy in SCI. The in vitro results suggest that co-culturing hMSC and iMN can synergistically promote induction of MN neurite outgrowth.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Neurônios Motores , Ratos Sprague-Dawley , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/terapia , Animais , Células-Tronco Pluripotentes Induzidas/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Neurônios Motores/citologia , Ratos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Humanos , Modelos Animais de Doenças , Regeneração Nervosa
19.
Immun Inflamm Dis ; 12(4): e1256, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652010

RESUMO

BACKGROUND: Spinal cord injury (SCI) is a traumatic neurological disorder with limited therapeutic options. Tumor protein p53-inducible nuclear protein 2 (TP53INP2) is involved in the occurrence and development of various diseases, and it may play a role during SCI via affecting inflammation and neuronal apoptosis. This study investigated the associated roles and mechanisms of TP53INP2 in SCI. METHODS: Mouse and lipopolysaccharide (LPS)-induced SCI BV-2 cell models were constructed to explore the role of TP53INP2 in SCI and the associated mechanisms. Histopathological evaluation of spinal cord tissue was detected by hematoxylin and eosin staining. The Basso, Beattie, and Bresnahan score was used to measure the motor function of the mice, while the spinal cord water content was used to assess spinal cord edema. The expression of TP53INP2 was measured using RT-qPCR. In addition, inflammatory factors in the spinal cord tissue of SCI mice and LPS-treated BV-2 cells were measured using enzyme-linked immunosorbent assay. Apoptosis and related protein expression levels were detected by flow cytometry and western blot analysis, respectively. RESULTS: TP53INP2 levels increased in SCI mice and LPS-treated BV-2 cells. The results of in vivo and in vitro experiments showed that TP53INP2 knockdown inhibited the inflammatory response and neuronal apoptosis in mouse spinal cord tissue or LPS-induced BV-2 cells. CONCLUSIONS: After spinal cord injury, TP53INP2 was upregulated, and TP53INP2 knockdown inhibited the inflammatory response and apoptosis.


Assuntos
Apoptose , Inflamação , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/genética , Camundongos , Inflamação/patologia , Inflamação/metabolismo , Inflamação/genética , Inflamação/imunologia , Técnicas de Silenciamento de Genes , Masculino , Lipopolissacarídeos , Modelos Animais de Doenças , Linhagem Celular , Medula Espinal/patologia , Medula Espinal/metabolismo , Medula Espinal/imunologia , Camundongos Endogâmicos C57BL
20.
Cells ; 13(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38667267

RESUMO

The differential expression of transcription factors during embryonic development has been selected as the main feature to define the specific subclasses of spinal interneurons. However, recent studies based on single-cell RNA sequencing and transcriptomic experiments suggest that this approach might not be appropriate in the adult spinal cord, where interneurons show overlapping expression profiles, especially in the ventral region. This constitutes a major challenge for the identification and direct targeting of specific populations that could be involved in locomotor recovery after a traumatic spinal cord injury in adults. Current experimental therapies, including electrical stimulation, training, pharmacological treatments, or cell implantation, that have resulted in improvements in locomotor behavior rely on the modulation of the activity and connectivity of interneurons located in the surroundings of the lesion core for the formation of detour circuits. However, very few publications clarify the specific identity of these cells. In this work, we review the studies where premotor interneurons were able to create new intraspinal circuits after different kinds of traumatic spinal cord injury, highlighting the difficulties encountered by researchers, to classify these populations.


Assuntos
Interneurônios , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal , Medula Espinal , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/fisiopatologia , Interneurônios/metabolismo , Animais , Humanos , Medula Espinal/patologia , Adulto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...